Nonlinear stochastic dynamics of mesoscopic homogeneous biochemical reaction systems—an analytical theory

نویسنده

  • Hong Qian
چکیده

The nonlinear dynamics of biochemical reactions in a small-sized system on the order of a cell are stochastic. Assuming spatial homogeneity, the populations of n molecular species follow a multi-dimensional birth-and-death process on Z . We introduce the Delbrück–Gillespie process, a continuous-time Markov jump process, whose Kolmogorov forward equation has been known as the chemical master equation, and whose stochastic trajectories can be computed via the Gillespie algorithm. Using simple models, we illustrate that a system of nonlinear ordinary differential equations on R emerges in the infinite system size limit. For finite system size, transitions among multiple attractors of the nonlinear dynamical system are rare events with exponentially long transit times. There is a separation of time scales between the deterministic ODEs and the stochastic Markov jumps between attractors. No diffusion process can provide a global representation that is accurate on both short and long time scales for the nonlinear, stochastic population dynamics. On the short time scale and near deterministic stable fixed points, Ornstein–Uhlenbeck Gaussian processes give linear stochastic dynamics that exhibit time-irreversible circular motion for open, driven chemical systems. Extending this individual stochastic behaviour-based nonlinear population theory of molecular species to other biological systems is discussed. Mathematics Subject Classification: 82C31, 37N25, 92C40 (Some figures in this article are in colour only in the electronic version) 0951-7715/11/060019+31$33.00 © 2011 IOP Publishing Ltd & London Mathematical Society Printed in the UK & the USA R19

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-equilibrium phase transition in mesoscopic biochemical systems: from stochastic to nonlinear dynamics and beyond.

A theory for an non-equilibrium phase transition in a driven biochemical network is presented. The theory is based on the chemical master equation (CME) formulation of mesoscopic biochemical reactions and the mathematical method of large deviations. The large deviations theory provides an analytical tool connecting the macroscopic multi-stability of an open chemical system with the multi-scale ...

متن کامل

Cellular Biology in Terms of Stochastic Nonlinear Biochemical Dynamics: Emergent Properties, Isogenetic Variations and Chemical System Inheritability

Based on a stochastic, nonlinear, open biochemical reaction system perspective, we present an analytical theory for cellular biochemical processes. The chemical master equation (CME) approach provides a unifying mathematical framework for cellular modeling. We apply this theory to both self-regulating gene networks and phosphorylationdephosphorylation signaling modules with feedbacks. Two types...

متن کامل

Mesoscopic biochemical basis of isogenetic inheritance and canalization: stochasticity, nonlinearity, and emergent landscape.

Biochemical reaction systems in mesoscopic volume, under sustained environmental chemical gradient(s), can have multiple stochastic attractors. Two distinct mechanisms are known for their origins: (a) Stochastic single-molecule events, such as gene expression, with slow gene on-off dynamics; and (b) nonlinear networks with feedbacks. These two mechanisms yield different volume dependence for th...

متن کامل

The Chemical Master Equation Approach to Nonequilibrium Steady-State of Open Biochemical Systems: Linear Single-Molecule Enzyme Kinetics and Nonlinear Biochemical Reaction Networks

We develop the stochastic, chemical master equation as a unifying approach to the dynamics of biochemical reaction systems in a mesoscopic volume under a living environment. A living environment provides a continuous chemical energy input that sustains the reaction system in a nonequilibrium steady state with concentration fluctuations. We discuss the linear, unimolecular single-molecule enzyme...

متن کامل

Fluorescence correlation spectroscopy and nonlinear stochastic reaction-diffusion.

The currently existing theory of fluorescence correlation spectroscopy (FCS) is based on the linear fluctuation theory originally developed by Einstein, Onsager, Lax, and others as a phenomenological approach to equilibrium fluctuations in bulk solutions. For mesoscopic reaction-diffusion systems with nonlinear chemical reactions among a small number of molecules, a situation often encountered ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011